

TDQ56X1Q56X-003 200G QSFP56 Direct Attach Cable - PAM4 Datasheet

General Description

QSFP56 passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 56Gbps(PAM4) per channel, and meets 200G Ethernet and InfiniBand Data Rate(EDR) requirements. Available in 26AWG and 30AWG wire gauges, this 200G copper cable assembly features low insertion loss and low crosstalk.

QSFP56 uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics.

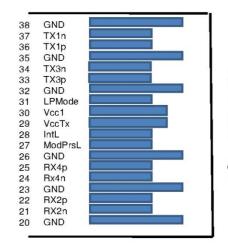
Designed for applications in the data center, networking and telecommunications markets that require a high speed, reliable cable assembly, this next generation product shares the same mating interface with QSFP+ form factor ,making it backward compatible with existing QSFP ports.

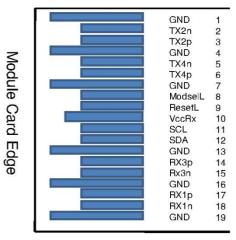
Features and Benefits

- Compatible with IEEE 802.3bj and IEEE 802.3cd
- Supports aggregate data rates of 200Gbps(PAM4)
- Optimized construction to minimize insertion loss and crosstalk
- Backward compatible with existing QSFP+ connectors and cages
- Pull-to-release slide latch design
- 26AWG and 30AWG cable
- Operating temperature: 0~70°C
- Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation
- Customizable EEPROM mapping for cable signature
- RoHS Compliant

Industry Standards

- 200G Ethernet(IEEE 802.3cd)
- InfiniBand EDR


Pin Descriptions


QSFP56 Pin Function Definition

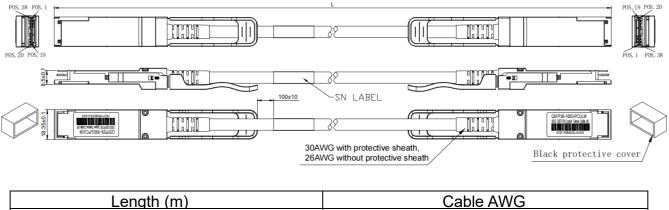
Pin	Logic	Symbol	Description	
1		GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Ground	
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		Vcc Rx	+3.3V Power Supply Receiver	
11	LVCMOS- I/O	SCL	2-wire serial interface clock	
12	LVCMOS- I/O	SDA	2-wire serial interface data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	
20		GND	Ground	
21	CML-O	Rx2n	Receiver Inverted Data Output	

22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		Vcc Tx	+3.3V Power supply transmitter	
30		Vcc1	+3.3V Power supply	
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	

Top Side Viewed From Top Bottom Side Viewed From Bottom

High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ώ	
Insertion loss	SDD21	-17.16			dB	At 13.28 GHz
Differential Return Loss	SDD11			See 1	dB	At 0.05 to 4.1 GHz
Differential Return 2033	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to common- mode output return loss	SCC11 SCC22			-2	dB	At 0.2 to 19 GHz
Differential to common-mode return loss	SCD11 SCD22			See 3	dB	At 0.01 to 12.89 GHz



				See 4		At 12.89 to 19 GHz
	SCD21-IL			-10	dB	At 0.01 to 12.89 GHz
Differential to common Mode Conversion Loss				See 5		At 12.89 to 15.7 GHz
				-6.3		At 15.7 to 19 GHz
Notes: 1. Reflection Coefficient given by equation SDD11(dB) < -16.5 + 2 × SQRT(f), with f in GHz 2. Reflection Coefficient given by equation SDD11(dB) < -10.66 + 14 × log10(f/5.5), with f in GHz 3. Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz 4. Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz						

5. Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz

Mechanical Specifications

The connector is compatible with the SFF-8665 specification.

Length (m)	Cable AWG
1	30
2	26
3	26

Regulatory Compliance

Feature	Test Method	Performance	
Electrostatic			
Discharge (ESD)	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)	
to the Electrical			
Electromagn	FCC Class B	Compliant with	
etic	CENELEC EN55022 Class B	Standards	
Interference(CISPR22 ITE Class B		
		Typically Show no	
RF Immunity(RFI)	IEC61000-4-3	Measurable Effect from a	
		10V/m Field Swept from 80	
		to 1000MHz	

RoHS Compliance	RoHS Directive 2011/65/EU and it's Amendment Directives (EU) 2015/863	RoHS (EU) 2015/863 compliant
REACH Compliance	REACH Regulation (EC) No 1907/2006	REACH (EC) No 1907/2006 compliant