Product Specification Datasheet

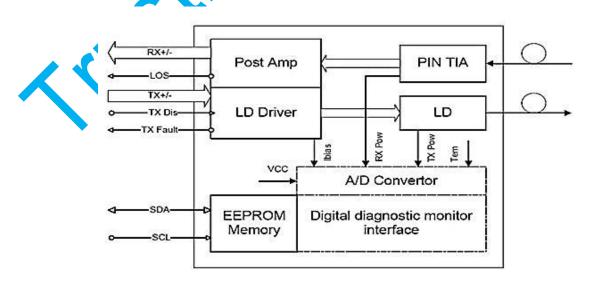
SFP+ 10G SR

RoHS Compliant 10Gb/s SFP+ 850nm 300m Optical Transceiver

Product Features

- •Supports up to 11.3Gb/s bit rates
- ◆Duplex LC connector
- Hot pluggable SFP+ footprint
- ●850nm VCSEL transmitter, PIN photo-detector
- •Up to 300m on 50/125um MMF(2000MHZ.KM)
- ●Low power consumption, < 1W
- Digital Diagnostic Monitor Interface
- •Optical interface compliant to IEEE 802.3ae
- Electrical interface compliant to SFF-8431
- Operating case temperature:

Commerical: 0~70°C Industrial: -40 to 85 °C


Applications

- •10G Base-SR/SW at 10.3125G
- ●10G Fiber Channel
- Other optical links

Product Descriptions

SFP+ 10G SR Enhanced Small Form Factor Pluggable SFP+ transceivers are designed for use in 10-Gigabit Ethernet over MultiMode fiber. They are compliant with SFF-8431, SFF-8432 and IEEE 802.3ae 10GBASE-SR/SW. The transceiver designs are optimized for high performance and cost effective to supply customers the best solutions for telecommunication and datacom.

Functional Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Supply Voltage	Vcc	-0.5	4.0	V	
Storage Temperature	Ts	-40	85	°C	
Relative Humidity	RH	0	85	%	

Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the transceiver.

General Operating Characteristics

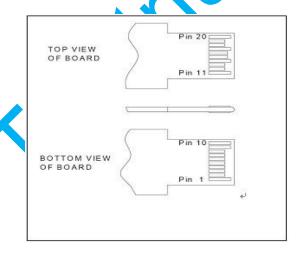
Parameter	Symbol	Min.	Тур	Max.	Unit	Note
Data Rate	DR	9.953	10.3125	10.518	Gb/s	
Supply Voltage	Vcc	3.13	3.3	3.47	V	
Supply Current	Icc₅			280	mA	
Operating Case Temp.	Tc	0		70	°C	
	Ti	-40		85	C	

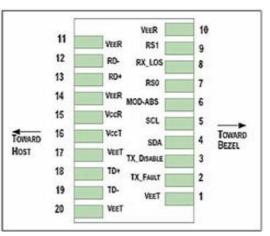
Electrical Characteristics (ToP(C) =0 to 70 °C, ToP(I) =-40 to 85 °C, Vcc = 3.13 to 3.47 V)

Parameter	Symbol	Min.	Тур	Max.	Unit	Note	
Transmitter							
Differential data input swing	VINPP	180		700	m∨pp	1	
Transmit Disable Voltage	VD	Vcc-0.8		Vcc	V		
Transmit Enable Voltage	Ven	Vee		Vee+0.8	V		
Input differential impedance	Rin		100		Ω		
Receiver							
Differential data output swing	Vout,pp	300		850	m∨pp	2	
Output rise time and fall time	Tr, T f	28			Ps	3	
LOS asserted	VLOS_F	2		Vcc_host	V	4	
LOS de-asserted	VLOS_N	Vee		Vee+0.8	V	4	

Note:

- 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
- 2. Into 100Ω differential termination.
- 3. 20 80%. Measured with Module Compliance Test Board and OMA test pattern. Use of four 1's and four 0's sequence in the PRBS 9 is an acceptable alternative.
- 4. LOS is an open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.


Optical Characteristics (ToP(c) =0 to 70 ℃,ToP(I) =-40 to 85 ℃,Vcc = 3.13 to 3.47 V)


Parameter	Symbol	Min.	Тур	Max.	Unit	Note	
Transmitter							
Operating Wavelength	λ	840	850	860	nm		
Ave. output power (Enabled)	Pave	-6		-1	dBm	1	
Extinction Ratio	ER	4	4.5		dB		
RMS spectral width	Δλ			1	nm		
Rise/Fall time (20%~80%)	Tr/Tf			50	ps 🛕	2	
Dispersion penalty	TDP			3.9	dB		
Output Optical Eye	Compliant wit	Compliant with IEEE 0802.3ae					
		Rece	iver				
Operating Wavelength		840	850	860	nm		
Receiver Sensitivity (ER=4.5)	P _{SEN1}			-11.1	dBm	3	
Overload	Pave			0.5	dBm		
LOS Assert	Pa	-30			dBm		
LOS De-assert	Pd			-12	dBm		
LOS Hysteresis	Pd-Pa	0.5			dB		

Notes:

- 1. Measured at 10.3125b/s with PRBS 2^{31-1} NRZ test pattern.
- 2.20%~80%
- 3.Under the ER worst case=4.5@ 10.3125 Gb/s with PRBS 2^{31-1} NRZ test pattern for BER < 1×10^{-12}

Pin Defintion And Functions

Pin	Symbol	Name/Description						
1	VEET [1]	Transmitter Ground						
2	Tx_FAULT [2]	Transmitter Fault						
3	Tx_DIS [3]	Transmitter Disable. Laser output disabled on high or open						
4	SDA [2]	2-wire Serial Interface Data Line						
5	SCL [2]	2-wire Serial Interface Clock Line						
6	MOD_ABS [4]	Module Absent. Grounded within the module						
7	RS0 [5]	Rate Select 0						
8	RX_LOS [2]	Loss of Signal indication. Logic 0 indicates normal operation						
9	RS1 [5]	Rate Select 1						
10	VEER [1]	Receiver Ground						
11	VEER [1]	Receiver Ground						
12	RD-	Receiver Inverted DATA out. AC Coupled						
13	RD+	Receiver DATA out. AC Coupled						
14	VEER [1]	Receiver Ground						
15	VCCR	Receiver Power Supply						
16	VCCT	Transmitter Power Supply						
17	VEET [1]	Transmitter Ground						
18	TD+	Transmitter DATA in. AC Coupled						
19	TD-	Transmitter Inverted DATA in. AC Coupled						
20	VEET [1]	Transmitter Ground						

Notes:

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2.should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.6V.
- 3.Tx_Disable is an input contact with a $4.7 \text{ k}\Omega$ to 10 k Ω pullup to VccT inside the module.
- 4.Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range
- 4.7 k Ω to 10 k Ω . Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.

5. RSO and RS1 are module inputs and are pulled low to VeeT with > 30 k Ω resistors in the module.

Serial Interface for ID and Digital Diagnostic Monitor

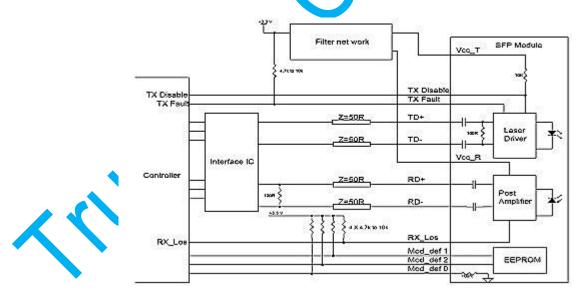
SFP+ 10G SR transceiver support the 2-wire serial communication protocol as defined in the SFP+ MSA. The standard SFP+ serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. Additionally, This SFP+ transceivers provide an enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X(A0h), so the originally monitoring interface makes use of the 8 bit address(A2h), so the originally defined serial ID memory map remains unchanged. The structure of the memory map is shown in Table 1.

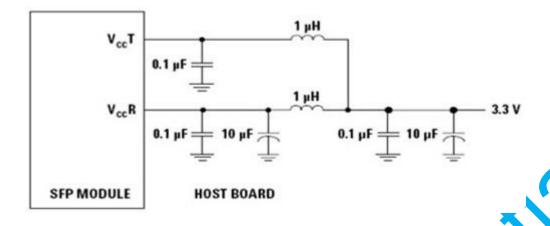
2 wire address 1010000X (A0h)		2 wire address 1010001X (A2h)		
Address Information		Address	Information	
0~95 Serial ID Defined by SF	Contail D Defend by CED MCA (OC by too)	0~55	Alarm and Warning Thresholds (56 bytes)	
	Senai ID Defined by SFP MSA (96 bytes)	56~95	Calibration Constants (40 bytes)	
96~127 Vendor Sp	Vandar Caraifa (22 h.dan)	96~119	Real Time Diagnostic Interface (24 bytes)	
	Vendor Specific (32 bytes)	120~127	Vender Specific (8 bytes)	
128~255	Decembed CEE0070 (420 bytes)	128~247	User Writable EEPROM (120 bytes)	
120~255	Reserved,SFF8079 (128 bytes)	248~255	Vender Specific (8 bytes)	

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

Digital Diagnostic Specifications

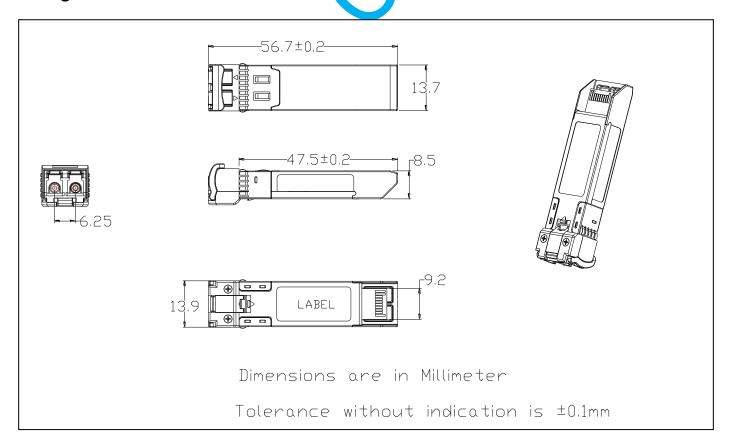

The SFP+ 10G SR transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Units	Min.	Max.	Accuracy	Note
Transceiver temperature	D тетр-Е	ōС	-45	+90	±5ºC	1
Transceiver supply voltage	Dvoltage	V	2.8	4.0	±3%	
Transmitter bias current	DBias	mA	0	80	±10%	2
Transmitter output power	DTx-Power	dBm	-8	+1	±2dB	
Receiver average input power	D _{Rx-Power}	dBm	-13	0	±2dB	


Notes:

- 1. Internally measured
- 2. The accuracy of the Tx bias current is 10% of the actual current from the laser driver to the laser

Typical Interface Circuit


Recommended power supply filter

Note:

Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value

Package Dimensions

Ordering Information

Part Number	Description
TNSP851XL-CD300	SFP+, up to 11.3Gb/s, 850nm, 300m, 0~70℃, with Digital Diagnostic Monitor
TNSP851XL-ID300	SFP+, up to 11.3Gb/s, 850nm, 300m, -40~85°C, with Digital Diagnostic Monitor

